CHROM. 15,159

QUALITATIVE ION-PAIR REVERSED-PHASE THIN-LAYER CHROMATOGRAPHY

H. M. RUJTEN*, P. H. VAN AMSTERDAM and H. DE BREE
Duphar Research Laboratories, P.O. Box 2, 1380 AA Weesp (The Netherlands)
(First received February 16th, 1982; revised manuscript received July 8th, 1982)

SUMMARY

The chromatographic properties of 132 compounds were investigated in two ion-pair systems on reversed-phase thin-layer plates. The systems consisted of tetrabutylammonium and tetramethylammonium halides for the anionic mode and of sodium heptyl and methyl sulphonates for the cationic mode.

Carboxylic and sulphonic acids yielded significant positive ΔR_{F} values in the anionic system. In the cationic system the ΔR_{F} values of most of the carboxylic acids were not significantly different from zero, but the sulphonic acids yielded negative ΔR_{F} values significantly different from zero.

For the carboxylic acids the magnitude of ΔR_{F} in the anionic system depended on the nature of the substituent and also of the substitution pattern. In effect, the magnitude of ΔR_{F} appeared to be directly related to the extent to which the ionogenic group contributed to the hydrophilic character of the molecule.

Aromatic amines yielded no ΔR_{F} values significantly different from zero in either mode. Of the aliphatic amines the ΔR_{F} values in the cationic system were positive, their magnitude increasing from primary toward tertiary amines. These amines, except for some primary ones, trailed in the anionic mode.

It is concluded that qualitative ion-pair thin-layer chromatography can be helpful in the identification of functional groups of unknown compounds.

INTRODUCTION

In the past, more or less successful efforts have been made to correlate the chromatographic behaviour of organic substances with their chemical characteristics. Martin, in 1950^{1}, demonstrated a linear relationship between the R_{M} values of homologous series, R_{M} being defined as

$$
R_{M}=\log \frac{1}{R_{F}}-1
$$

ReichI ${ }^{2}$, elaborating on Martin's work, introduced the concept of ΔR_{M} as the difference between the R_{M} values of a compound in two solvent systems. He demonstrated that ΔR_{M} was constant for a specific functional group, in this case the carboxylic
group, provided that the chromatographic properties of the rest of the molecule were similar in the two solvent systems. Reichl obtained solvent pairs meeting this condition by the addition of acetic acid to a solvent mixture and chromatographing with or without the acid. Reichl ${ }^{2}$ also demonstrated that ΔR_{M} was a direct function of the number of carboxylic groups in a molecule, and that an amino group offsets the effect of a carboxylic group. He also found, not unexpectedly, that the method did not work with strongly ionized acids; the condition of chromatography in, alternately, the ionized and the non-ionized state, is not fulfilled ${ }^{3}$.

At about the same time, Lederer and Kertes ${ }^{4}$ demonstrated the usefulness of paper impregnated with ion exchanger both for the separation of ionogenic compounds and for estimating the valence of ionogenic groups. Since then many papers have been published about the use of ion-exchange or ion-pair chromatography ${ }^{5-10}$ on paper or thin layers. These works, however, were mainly aimed at improving the separation characteristics of chromatographic systems.

In the present paper we have adapted Reichl's ΔR_{M} method for use in reversedphase ion-pair chromatography. In our choice of pairs of chromatographic systems we have utilised the experimental fact that compounds capable of forming ion pairs, when chromatographed on reversed-phase plates impregnated with counter-ions, are retained longer the larger the alkyl chain of these counter-ions.

In such systems the magnitude of ΔR_{F} for a compound depends on the extent to which the compound's ionogenic group renders it hydrophilic. In our reversedphase systems we chose tetramethylammonium (N1) and tetrabutylammonium bromide (N4) as the pair of impregnating agents for the anionic, and the sodium salts of methyl- (S1) and heptyl-sulphonic acid (S7) for the cationic system.

Taking into account that the method is not able to affect only the ionic group, we used $A R_{F}$ approach instead of the ΔR_{M} because the former seems less sensitive to small structural differences in the non-ionic part of the molecule in our systems.

EXPERIMENTAL

Chemicals and reagents

Tetramethylammonium bromide (N1) and tetrabutylammonium bromide (N4) were obtained from Fluka (Buchs, Switzerland), and sodium methylsulphonate (S1) and sodium heptanesulphonate (S7) from Eastman-Kodak (Rochester, NY, U.S.A.).

Impregnation of the plates

Silica gel Si $60 \mathrm{~F}_{254}$ silanized thin-layer plates (art. 5747; Merck, Darmstadt, G.F.R.) were impregnated with N1, N4, S1 or S7 detergent by dipping them into a 0.05 M methanolic solution of either detergent. Then the plates were air-dried in a vertical position and stored in a dust-free, dark place. Under these conditions the plates were stable for at least three months.

Preparation and application of the test-substance solutions

The test compounds were dissolved in acetonitrile-water (1:1) in a concentration of $c a .0 .01 \mathrm{M}$. Some ammonia was added for the chromatography of α-amino acids. Then $10 \mu \mathrm{l}$ of these solutions were spotted onto each of the four differently
impregnated plates. The solvent was evaporated under a gentle stream of nitrogen. As a reference compound, $10 \mu \mathrm{l}$ of a $0.01 M$ acetanilide solution were spotted onto each plate.

Development of the chromatograms

The chromatograms were developed vertically in vapour-saturated tanks containing methanol-water (6:4) solution, in which $0.05 M$ of the corresponding detergent was dissolved to prevent gradient elution ${ }^{5}$. The running distance was fixed at 15 cm . Thus the elution time was $c a .2 \mathrm{~h}$ at room temperature. Afterwards the plates were air-dried.

Detection

Spots of compounds with adequate UV light absorption properties were located by fluorescence quenching at 254 nm . The following colouring reagents were used as alternative methods: (a) ninhydrin for primary and secondary amines and amino acids; (b) iodo-platinate for tertiary amines; (c) aniline-xylose for carboxylic acids. The procedures were as described by Smith ${ }^{11}$.

R_{F} normalisation

The R_{F} values were normalised with reference to acetanilide using the following formula:

$$
\begin{equation*}
\frac{R_{F}^{\prime}(\mathrm{X})}{R_{F}^{\prime}(\mathrm{ref})} \cdot 0.6=R_{F}(\mathrm{X})(\text { norm }) \tag{1}
\end{equation*}
$$

where $R_{F}^{\prime}(\mathrm{X})=R_{F}$ of unknown component on a plate; $R_{F}^{\prime}($ ref $)=R_{F}$ of acetanilide on the same plate; $0.6=$ a constant \approx mean R_{F} of acetanilide on all the plates used in this study.

RESULTS AND DISCUSSION

We screened both the anionic and cationic functions of 132 compounds, five times over. The results for the different classes of compounds tested are given in Tables I-V. The structures of compounds indicated by their generic names are given in Table VI. Fig. 1 is a graphical presentation of the results in these tables.

In view of our experimental data we held a mean ΔR_{F} of over ± 0.03 to be a significant score. The dotted lines in Fig. 1 indicate the borders of significance.

Anion screening (N1/N4-system)
Almost all the carboxylic and sulphonic acids, as well as the sulphuric acid ester, show a significantly positive ΔR_{F} value; of the phenols only the stronger acidic ones score significantly.

With the aromatic acids the values of ΔR_{F} vary with the substituent, while for each substituent they vary with the substitution pattern. The magnitude of ΔR_{F} appears to be directly related to the extent to which the ionogenic group contributes to the hydrophilic character of the molecule. This is illustrated by benzoic acid in comparison to 3- and 4-hydroxy-, 3- and 4-amino- and 3,5-dihydroxybenzoic acids.
TABLE I
QUALITATIVE ION-PAIR SCREENING RESULTS OF THE CARBOXYLIC ACIDS

	Compound	$R_{F} \times 100$							Compound	$R_{F} \times 100$					
		N1	N4	Δ	S1	S7	Δ			N1	$N 4$	Δ	S1	S7	Δ
	Mono-aromatic acids								Mono-aliphatic acids						
1	Benzoic acid	76	62	14	72	71	1	33	Acetic acid	80	68	12	75	76	-1
	Mono-substituted							34	Propionic acid	82	70	12	77	78	-1
2	2-Methyl	77	61	16	76	75	1	35	Butyric acid	77	66	11	77	75	2
3	3-Methyl	75	59	16	71	69	2	36	Valeric acid	73	62	11	69	68	1
4	4-Methyl	75	59	16	72	71	1	37	Caprionic acid	68	57	11	-	65	
5	2-Chloro	77	61	16	77	77	0	38	Caprylic acid	54	44	10	55	56	-1
6	4-Chloro	75	59	16	72	72	0	39	Capric acid	39	29	10	38	40	-2
7	2-Diazo-4'-(N -dimethyl aniline)	56	40	16	55	55	0	40	Acrylic acid	80	73	7	82	83	-1
8	2-Methoxy	78	63	15	74	73	1	41	Lactic acid	78	74	4	80	81	-1
9	4-Methoxy	76	61	15	72	71	1	42	D-Glucuronic acid	83	83	0	82	80	2
10	2-Nitro	77	62	15	72	74	-2	43	Phenolphthalein-D-glucuronide	76	65	11	79	85	-6
11	4-Nitro	75	60	15	73	76	-3								
12	2-Hydroxy	75	55	20	73	74	-1		Phenylacetic acid						
13	3-Hydroxy	79	67	12	76	81	-5		Mono-substituted						
14	4-Hydroxy	81	69	12	75	76	-1	44	4-Methoxy	80	67	13	78	77	1
15	2-Amino	78	61	17	73	72	1	45	2-Hydroxy	74	56	18	77	78	-1
16	3-Amino	79	69	10	79	81	-2	46	4-Hydroxy	79	66	13	80	81	-1
17	4-Amino	80	71	9	76	78	-2	47	2-Pyridylacetic acid	89	70	19	79	78	1

Fig. 1. Correlation chart ΔR_{F} versus structure. The numbers in the diagram represent the substitution site, the letters indicate the appearance of the spot on the plate $(\mathrm{e}=$ elongated, $\mathrm{b}=$ broad, $\mathrm{t}=$ trail $)$. The dotted lines are the borders of significance.

TABLE II

QUALITATIVE ION-PAIR SCREENING RESULTS OF THE SULPHONIC ACIDS AND A SULPHATE

No.	Compound	$R_{F} \times 100$					
		N1	N4	Δ	S1	S7	Δ
	Mono-sulphonic acids						
	Benzenesulphonic acid Mono-substituted						
68	2-Methyl	78	61	17	74	77	-3
69	4-Methyl	77	61	16	76	80	- 4
70	4-Hydroxy	78	69	9	77	85	-8
71	2-Amino	82	64	18	77	82	- 5
72	3-Amino	83	70	13	78	83	- 5
73	4-Amino	84	73	11	78	83	- 5
74	4-Hydrazin	83	70	12	84	93	- 8
75	4-Diazo- N^{\prime}-dimethylaniline Di-sulphonic acids	56	35	21	58	68	-10
76	1,3-Benzenedisulphonic acid	82	67	15	84	89	- 5
77	Phenol-2,4-disulphonic acid	75	51	24	83	89	-6
78	Ponceau-3R-red	89	53	36	95	99	- 4
79	E 111	77	54	23	84	96	-12
80	E 122	72	37	35	80	94	-14
81	E 125	75	39	36	80	94	-14
82	Phenolphthalein disulphate Tri-sulphonic acids	83	49	34	83	90	-7
83	E 123	85	58	27	89	99	-10
	Tetra-sulphonic acids						
84	E 126	90	52	38	90	99	- 9
85	E 151	82	50	32	88	99	-11
86	E 152	84	57	27	79	97	-18

TABLE III

QUALITATIVE ION-PAIR SCREENING RESULTS OF PHENOLS

No.	Compound	$R_{F} \times 100$							N	$S 1$	$S 7$	4
		$N 1$	$N 4$	4								
87	Phenol	56	58	-2	63	66	-3					
	Mono-substituted											
88	4-Phenyl	39	40	0	41	42	-1					
89	2-Nitro	51	49	2	50	51	-1					
90	4-Nitro	61	49	12	51	52	-1					
	Poly-substituted		31	31	0	45	43					
91	2,6-Dichloro	70	44	26	72	78	-6					
92	2,6-Dinitro	70	44	26	71	79	-8					
93	2,4-Dinitro	65	33	32	70	76	-6					
94	2.4.6-Trinitro											

TABLE IV
QUALITATIVE ION-PAIR SCREENING RESULTS OF AMINES
The letter in the table characterise the spot on the plate $(b=$ broad; $e=$ elongated; $t=$ trail $)$.

No.	Compound	$R_{F} \times 100$							
		N1		$N 4$	Δ	S1		57	Δ
	Aromatic amines			55	0			56	
95	4-Chloroaniline	55				57			1
	N-Heterocylic								
	compounds								
96	Quinoline	44		47	- 3	46		45	1
	Aliphatic amines (mono)								
	Primary								
97	n-Butylamine	56 e		49 e	7	66		55	11
98	n-Hexylamine	47 e		37e	10	58		46	12
99	n-Octylamine	25 e		17 e	8	43		33	10
100	Fluvoxamine	20 e		10 e	10	38		26	12
101	N -Naphthylene ethyldiamine	22 b		9 e	13	47		39	11
102	x-(2-Amino ethane)pyridine	48 e		24 e	24	60		49	11
103	Benzylamine	48 b		10 b	38	53		44	10
	Secondary								
104	Diethylamine	63 e		-	-	74		60	14
105	Diethanolamine	-		48 e	-	69		64	5
106	Ritodrine	$70{ }^{\text {e }}$		84e	-14	76		64	12
107	Isoxsuprine	t		t	-	64		51	13
108	Betahistine	58e		69 e	- 12	67		67	13
	Tertiary								
109	Triethanolamine	85 e		81e	4	77		71	6
110	Tripropylamino	67 e		69 e	-2	68		54	14
111	Mebeverine	65 e		76 e	-11	66		49	17
112	Mebeverine alcohol	63 e		77 e	-14	64		49	15
113	Secoverine	t		t	-	43		28	15
114	2-Methoxy-N-phenylpiperazine	t		t	-	52 e		45 e	7
	Diamines								
115	Diaminoethane	0	\rightarrow	30 t	-	0	\rightarrow	30 t	-
116	Diaminopropane	0	\rightarrow	30 t	-	0	\rightarrow	30 t	-
117	Diethylamino-N-ethylamine	20	\rightarrow	50 t	-	20	\rightarrow	50 t	-
118	Diethylamino-N-propylamine	20	\rightarrow	50 t	-	20	\rightarrow	50 t	-
119	2-Methoxyphenylpiper-azine- N -ethylamine	22		11	11	42		34	8
	Tetraamines								
120	Triethylenetetraamine	0	\rightarrow	30 t	-	0	\rightarrow	30 t	-
121	Hexamethylenetetraamine	73		72	1	72		67	5

However, both 2-hydroxy- and 2,6-dihydroxybenzoic acids deviate grossly from this pattern. Evidently hydrophilic substituents adjacent to the aromatic acidic group function as one hydrophilic entity with respect to the counter-ion.

For the aliphatic acids as a group, ΔR_{F} is smaller than for the aromatic carboxylic acids. The lipophilic interaction of the aliphatic part of the molecule probably contributes more to the retention mechanism than an aromatic moiety does.

The difference in ΔR_{F} between 2 - and 4-nitrophenol cannot be explained by

TABLE V
QUALITATIVE ION-PAIR SCREENING RESULTS OF AMINO ACIDS
The letters in the table characterise the spot on the plate $(\mathrm{b}=$ broad; $\mathrm{e}=$ elongated; $\mathrm{t}=$ trail $)$.

No.	Compound	$R_{F} \times 100$					
		N1	N4	Δ	SI	S7	Δ
	α-Amino acids						
122	Tyrosine	t	t	-	t	t	-
123	Aspartic acid	77	69	8	74	72	2
124	Glutamic acid	78	68	10	75	72	3
125	Lysine	t	t	-	t	t	-
	Amino acids (β, γ etc.)						
126	β-Alanine	78e	77e	1	79	73 b	6
127	γ-Aminobutyric acid	78 e	77 e	1	80	74 b	6
128	5-Aminovaleric acid	77 e	80 e	-3	80	75	5
129	6-Aminocaprionic acid	77 e	81	-4	80	75	5
130	Fluvoxamine acid	51	49	2	51	47	4
131	Fluvoxamine alcohol glucuronide	63	57	6	59	54	5
132	2-Methoxyphenylpipe-razine- N -acetic acid	77	67	10	69	64	5

different K_{a} values; at the pH of the chromatographic system both phenols are dissociated to a similar extent. Since 2-nitrophenol is indifferent to the discrimination mechanism of the counter-ions, it probably forms no ion-pair because of strong intramolecular hydrogen-bonding, in contrast to 4-nitrophenol.

In the anion screening, primary amines yielded a positive $A R_{F}$ value. With the secondary and tertiary amines, trailing invariably occurred in the range of negative ΔR_{F} values.

Compounds having both an acidic and basic function have small and often insignificant ΔR_{F} values. In the latter case intramolecular ion-pairing probably prevails.

Cation screening ($S 1 / S 7$ system)

Fig. 1 shows that only the aliphatic amines yielded significantly positive ΔR_{F} values. Moreover, a clear distinction was obtained between primary, secondary and tertiary amines.

The amino acids have much lower ΔR_{F} values (like amine substituents with strong hydrophilic groups); with fluvoxamine acid the value is low enough to be insignificant, again probably owing to intramolecular ion-pairing.

No significant ΔR_{F} values were obtained with 4-chloroaniline or with quinoline. It therefore seems justifiable to consider weakly basic nitrogen substituents merely as hydrophilic substituents in the anion-screening discussion.

The significantly negative ΔR_{F} values of the sulphonic acids clearly distinguish them from the carboxylic acids.

Dependence of ΔR_{F} on the number of ionic groups
Table VII is a survey of the ΔR_{F} values in the N1/N4 system of the carboxylic

TABLE VI
STRUCTURES OF COMPOUNDS INDICATED BY THEIR GENERIC NAMES
No. Generic name
Structure

54 Cloximate acid

Ponceau-3R-red

79 E 111

80
E 122

81 F 125

TABLE VI (continued)

100 Fluvoxamine

106 Ritodrine

107 Isoxsuprine

Betahistine

Mebeverine

(Continued on p. 206)

TABLE VI (continued)

No. Generic name	
112	Mebeverine alcohol
Slucture	
Fluvoxamine acid	
Fluvoxamine alcohol	
glucuronide	

acids tested. The data are taken from Table I. The results show that, with certain exceptions, a relationship is valid between ΔR_{F} and the number of acidic groups (n) in the molecule. This empirical relationship was found to be

$$
\Delta R_{F}(n)=\Delta R_{F}(n=1)\{1+1 / 2(n-1)\}
$$

TABLE VII
THE RELATIONSHIP BETWEEN MONO- AND POLYACIDS WITHIN ANALOGUES

Monoacids	ΔR_{F}	Polyacids	$\begin{aligned} & \Delta R_{F} \\ & \text { (catc.) } \end{aligned}$	$\begin{aligned} & \Delta R_{F} \\ & \text { (exp. } \end{aligned}$
Aliphatic acids (no.33-39)	0.11	Aliphatic acids	0.16	0.16
2 -Hydroxybenzoic acid (no. 12)	0.20	5,5'-Methylene-disalicylic acid (no. 26)	0.30	0.33
3-Hydroxy-2-naphthoic (no. 24)	0.28	3,3'-Methylene-di-(2-hydroxy-		
2,6-Dihydroxybenzoic acid (no. 22)	0.27	1-naphthoic acid) (no. 28) 3,3'-Methylene-di-(2,6-di-	0.42	0.42
		hydroxybenzoic acid) (no. 29)	0.40	0.36
Acrylic acid (no. 40)	0.07	Maleic acid (no.65)	0.10	0.10
Lactic acid (no. 41)	0.04	Malic acid (no.61)	0.06	0.06
		Citric acid (no.67)	0.08	0.08

With regard to the exceptions, the phthalic acids (Table I, Nos. 30-32), fumaric acid (No. 66), 4-phenylenediacetic acid (No. 64) and benzene-1,3-disulphonic acid (Table II); No. 76), the chemical structures suggest this deviation is due to the
geometry of the molecules rendering impossible the simultaneous contact of the two acidic groups with the stationary phase. We did not include the monosulphonic acids in this survey because they did not have proper polysulphonic acid analogues.

Polyamines do not follow an analogous rule in the SI/S7 system. Under the screening conditions, n-alkane polyamines exhibited trailing on all plates from $R_{F} \approx$ $0-0.10$ to $R_{F} \approx 0.30-0.60$ (Table IV; Nos. 115-118 and 120). The cyclic polyamines reacted like amines with highly hydrophilic substituents.

Miscellaneous

α-Amino acids exhibited trailing from the start to $R_{F} \approx 0.80$ in both screening systems. The α-amino acids, which have an additional carboxylic group (Table V ; Nos.. 123 and 124), simply react like monoacids (as Reichl ${ }^{2}$ found with his ΔR_{M} method) only the spot is broader, which indicates the presence of an α-amino acid with its poor chromatographic performance under these conditions. An additional amino group in the α-amino acid lysine (Table V; No. 125) yields the combination of chromatographic performance of an n-alkane polyamine and an α-amino acid; i.e. trailing from $R_{F} \approx 0-0.60$.

CONCLUSIONS

Qualitative ion-pair chromatography is a useful tool for the identification of ionogenic groups in aromatic and aliphatic compounds. The system applied discriminates in general between carboxylic and sulphonic acids. When used with a set of reference compounds it also furnishes information about the nature of other than ionogenic substituents.

The method used is also indicative of the presence of primary, secondary and tertiary amino groups in aliphatic compounds.

In our laboratory we have applied quantitative ion-pair chromatography to the structural elucidation of biodegradation products of radioactive drugs. With the help of radiochromatogram scanning or scraping-off detection we could thus characterise drug metabolites in sub-microgram amounts. The technique also provided guidance in choosing appropriate derivatives for structural analysis of these metabolites by gas chromatography-mass spectrometry.

It is our experience that qualitative ion-pair TLC can provide a worthwhile and simple structural analysis, certainly in combination with other analytical methods such as infrared, ultraviolet, nuclear magnetic resonance spectroscopy or mass spectrometry, or even colouring reagents. Although the approach is somewhat different, in view of results we agree with Reichl when, in 1956, he foresaw that the idea of his " ΔR_{M} method" had a future.

ACKNOWLEDGEMENT

We thank Dr. L. C. Post for his helpful advice in preparing the manuscript.

REFERENCES

[^0]2 E. R. Reichl, Mikrochim. Acta, (1956) 958.
3 Cs. Horváth, W. Melander and I. Molnar, Anal. Chem., 49 (1977) 142.
4 M. Lederer and S. Kertes, Anal. Chim. Acta, 15 (1956) 226.
5 E. Farulla, C. Iacobelli-Turi, M. Lederer and F. Salvetti, J. Chromatogr., 12 (1963) 255.
6 L. Lepri, P. G. Desideri and D. Heimler, J. Chromatogr., 153 (1978) 77.
7 L. Lepri, P. G. Desideri and D. Heimler, J. Chromatogr., 155 (1978) 119.
8 L. Lepri, P. G. Desideri and V. Coas, J. Chromatogr., 161 (1978) 279.
9 L. Lepri, P. G. Desideri and D. Heimler, J. Chromatogr., 169 (1979) 271.
10 L. Lepri, P. G. Desideri and D. Heimler, J. Chromatogr., 173 (1979) 119.
11 I. Smith, Chromatographic and Electrophoretic Techniques, W. Heineman Medical Books Ltd., Bath, Great Britain, Vol. 1, 3rd ed., 1969.

[^0]: 1 A. J. P. Martin, Biochemical Society Symposium on Chromatography, University of Cambridge, Cambridge, Great-Britain, 1950.

